Category Archives: Devlog

OpenFL devlog: NativeWindow, Lime’s Haxe and C++ bridge, and improved cleanup

Recently, as a member of OpenFL’s leadership team, I decided that I wanted to do more to keep the community up-to-date with what new features I’m working on for the next versions of OpenFL and Lime. In today’s post, I’m going to talk a bit about the upcoming implementation of the openfl.display.NativeWindow class, which is based on a core API introduced way back in Adobe AIR 1.0. The purpose of the NativeWindow class is to open a new window (with its own stage and display list) on desktop operating systems, like Windows, macOS, and Linux.

If you’re not familiar, OpenFL is an implementation of the APIs available in Adobe Flash Player (and Adobe AIR) using the Haxe programming language. Projects built with Haxe can be cross-compiled to JavaScript, C++, and many other targets — making it available on the web, desktop apps, mobile apps, and more. No browser plugins required, and fully native C++ apps.

Implementing NativeWindow

Lime, which provides OpenFL’s integration with the native operating system, has the ability to open multiple windows through its use of SDL. SDL is a C++ library that provides a cross-platform interface for things like graphics, sound, gamepads/joysticks, and more. It’s commonly used in games, but isn’t necessarily restricted to that category of program.

Lime’s Window class was actually already exposed in OpenFL, including creating a new stage for each window. However, one of my goals as a contributor is to ensure that developers adopting OpenFL can easily migrate from Flash or AIR. So I needed to wrap Lime’s API with a new class that offers the familiar interface of AIR’s NativeWindow. In the process, I discovered that I had to expose a few new APIs that Lime didn’t provide yet. And, I was able to find some ways to optimize and improve cleanup of a window and its stage (and the entire application… more on this below).

For the most part, implementing NativeWindow was pretty straightforward because SDL provides many similar APIs to what is available in AIR, and many of these were already exposed through Lime. However, not all of these SDL APIs were fully exposed yet, and there were important differences in behavior between Lime’s Window and AIR’s NativeWindow where Lime needed some tweaks to support both behaviors. For instance, by default, Lime’s Window immediately opened on creation, but AIR keeps a window hidden until the visible property is set to true, or the activate() method is called.

Lime had actually exposed a way to hide a window by default, but there wasn’t yet a property/method to reveal it later. So I needed to dive into Lime’s C++ code and expose a new window visible property to Haxe that could be changed at runtime. Similarly, AIR allows developers to optionally set minimum and maximum dimensions of a NativeWindow, and Lime hadn’t yet exposed SDL’s functions for that feature yet.

Bridging Haxe and C++ in Lime

Adding new C++ code to Lime that can be called from Haxe involves changes in several files.

  1. The .hx class that provides the public API. In the case of the new visible property, that’s Window.hx.
  2. Lime APIs are usually powered by a separate “backend” class for each target. In this case, Window.hx calls into NativeWindow.hx (to be clear, that’s lime._internal.backend.NativeWindow, which is different from openfl.display.NativeWindow).
  3. C++ backend classes call methods defined in the NativeCFFI.hx class. NativeCFFI tells Haxe how to find the C++ APIs exposed by the compiled .ndll binary (or .hdll binary for HashLink). It requires separate declarations for Neko, HashLink, and hxcpp, so it’s kind of a confusing file to work with because there’s a lot of duplication.
  4. The ExternalInterface.cpp file, which exposes the public C++ API for the .ndll and .hdll binaries. This file usually doesn’t contain the concrete implementation, but instead, is more of the glue that talks to other C++ classes that do the actual work.
  5. The .h and .cpp file where the actual C++ concrete implementation exists. In this case, that’s SDLWindow.h and SDLWindow.cpp.

Adding new Haxe APIs to Lime that are implemented in C++ isn’t actually very hard, but it is (admittedly) a complicated process because there are so many places that can be affected by a single API change.

Improved disposal/cleanup

As I was implementing OpenFL’s NativeWindow class, I took some time to consider memory management. Many OpenFL apps have one window only, including mobile and JS/web apps (yes, Lime and OpenFL still have a “window” concept when building for web browsers). With that in mind, there’s often only one Stage and display list too. However, with NativeWindow, each additional window creates a new Stage. When closing a window, it’s important to clean up that stage as well, to make sure that there aren’t any memory leaks, or worse, memory leaks plus extra code running without end — even if it isn’t needed anymore. (The first thing I checked was that Event.ENTER_FRAME wasn’t still firing out of control, but thankfully, that was already working properly.)

Ideally, when an OpenFL app exits, it should close all of its windows and remove any references to itself from static variables. Doing this manually isn’t necessary on desktop and mobile because the operating system will clean everything up automatically when the app exits. However, when targeting JS/web, if you were to manually “exit” an OpenFL application (such as by calling Lime’s System.exit() method), or if you were to manually call close() on the “window”, that doesn’t necessarily mean the browser has navigated somewhere else. The app could be embedded in a page with other content, and it may be important to be able to load a new instance of the same OpenFL app again, or even replace it with a separate OpenFL app (or something entirely different), inside the same parent HTML DOM element at a later time.

The easiest improvement was setting the static properties lime.app.Application.current and openfl.desktop.NativeApplication.nativeApplication both to null on exit. It wouldn’t be possible for the application instance to be garbage collected without this change. Similarly, a number of event listeners defined by the application are added to static dispatchers that expose notifications from C++. These should be removed when the application exits too, so that they don’t prevent garbage collection.

Gamepad.onConnect.remove(__onGamepadConnect);
Joystick.onConnect.remove(__onJoystickConnect);
Touch.onCancel.remove(onTouchCancel);
Touch.onStart.remove(onTouchStart);
Touch.onMove.remove(onTouchMove);
Touch.onEnd.remove(onTouchEnd);

On the JS/HTML side, “closing” the “window” should also clean up the HTML DOM. Lime creates a <canvas> element that either renders to WebGL or falls back to software rendering. It also adds some event listeners to the canvas for mouse and touch. When the window is closed, or the application exits, the canvas should be removed from the DOM, and any listeners added to DOM elements should be removed too. Again, we need things to be garbage collected, and everything returned as close to the original state as possible.

var element = parent.element;
if (element != null)
{
	if (canvas != null)
	{
		if (element != cast canvas)
		{
			element.removeChild(canvas);
		}
		canvas = null;
	}
}

After all of these changes, Lime and OpenFL feel like much better HTML/JavaScript citizens, and it opens up some new possibilities for more complex websites where OpenFL is one small part of a larger system.

Where can I find the code?

If you want to try out the new NativeWindow feature, or the improved application/window/stage disposal, you’ll need to check out both Lime’s 8.1.0-Dev branch and OpenFL’s 9.3.0-Dev branch on Github, or download both the lime-haxelib artifact from a successful Github Actions Lime 8.1.0-Dev nightly build and the openfl-haxelib artifact from a successful Github Actions OpenFL 9.3.0-Dev nightly build. Of course, this code is not yet ready for release to Haxelib, so use at your own risk in production. There may still be some bugs.

OpenFL Devlog: Weak event listeners

About a year ago, I joined the OpenFL leadership team, in recognition of my contributions to the project. Since then, I’ve been working hard to improve things by fixing bugs and filling in missing features from the Flash API. If you’re not familiar, OpenFL is an implementation of the APIs available in Adobe Flash Player (and Adobe AIR) using the Haxe programming language. Projects built with Haxe can be cross-compiled to JavaScript, C++, and many other targets — making it available on the web, desktop apps, mobile apps, and more.

Over the last year, I’ve become more and more familiar with the OpenFL codebase — including Lime, OpenFL’s lower-level sibling that bridges the high-level Haxe code in OpenFL with low-level C++ code that is needed to integrate with the underlying operating system. It had been nearly 20 years since I last seriously used C++… and it’s been surprisingly enjoyable picking it up again. Sort of. I can do without the manual memory management (give me a garbage collector any day), but it’s exciting that I am no longer limited to working with what is already exposed at a high-level in OpenFL. If I’m feeling like getting my hands dirty, I can expose new native APIs, and hardware capabilities, that will empower other developers using OpenFL.

This is the first post of (I hope) many, where I give a technical summary of the recent features that I’ve implemented in OpenFL and Lime. Ideally, if I have time, I’d like to include some interesting low-level tidbits about each feature that you won’t find in the documentation, and would otherwise need to read OpenFL’s code to learn. In most cases, I plan to write about features that are actively in development, available only on Github at the time of writing, and not yet released to Haxelib. So be warned. The exact implementation details are subject to change, and if you want to try something out, you’ll either need to learn how to download nightly builds of OpenFL and Lime from Github Actions, or you’ll need to clone the repo and build it yourself. Without further ado, let’s get started on devlog #1.

Background on strong and weak event listeners

When you add an event listener by calling addEventListener(), like this…

dispatcher.addEventListener(type, listenerFunction);

…you create a reference from the dispatcher object to the listener function. Most references work this way: If object A is not yet eligible to be garbage collected, and it holds a reference to object B, then object B is also not yet eligible to be garbage collected. Later, if the reference from object A to object B is removed, then object B may be garbage collected (as long as there are no other references to it elsewhere). In terms of event listeners, removing the reference from the dispatcher to the listener function is done by calling removeEventListener(), like this:

dispatcher.removeEventListener(type, listenerFunction);

That type of reference is called a strong reference. There’s another type of reference, which is less common, called a weak reference. If object A is not yet eligible to be garbage collected, but it holds a weak reference to object B (and there are no other strong references to object B), then object B may be garbage collected.

An event listener may be added as a weak reference using the 5th parameter of addEventListener(), as seen in the code below:

dispatcher.addEventListener(type, listenerFunction, useCapture, priority, useWeakReference);

Weak listeners help reduce memory leak bugs by allowing objects to be garbage collected when you forget to call removeEventListener(), and the dispatcher shouldn’t be garbage collected yet. This is most common when adding event listeners to OpenFL’s stage (which is where all display objects get added if you want to render them). Stage listeners are added frequently for mouse and touch events, so ensuring that those listeners are removed is critical to writing correct OpenFL code. If the stage holds a strong reference to an object, that object probably isn’t getting garbage collected any time soon. That’s a memory leak, and if it happens enough times, it really starts to add up. When you add your listener as a weak reference, though, you can feel safe knowing that the object will eventually get garbage collected, even if you forgot the removeEventListener() call.

Implementation of weak listeners

Up until somewhat recently, it wasn’t possible to implement weak event listeners in OpenFL for most available targets, so OpenFL ignored the useWeakReference parameter, and added all references strongly. Event listeners in JS couldn’t be weak, and there simply wasn’t an API to weakly reference an arbitrary object in JS at all. For a long time, this was one place where OpenFL simply couldn’t match the capabilities of Flash.

However, between 2020 and 2021, web browser vendors started shipping the new WeakRef type for JavaScript. It provides a simple API for creating a weak reference to an object, instead of the normal strong reference. Here’s an example in JavaScript:

let ref = new WeakRef(targetObject);
let maybeTarget = ref.deref();
if (maybeTarget) {
    // object hasn't been garbage collected
} else {
    // object no longer exists
}

According to CanIUse, WeakRef has reached 92% availability. It’s ready for prime-time. However, when using WeakRef in OpenFL’s EventDispatcher implementation, I made sure to check if it’s available, and fall back to strong references, if needed.

Similarly, Haxe provides a cpp.vm.WeakRef for C++ desktop/mobile native targets that works very similarly. If you call its get() method, and the result is null, that means the object has been garbage collected.

var ref = new cpp.vm.WeakRef(targetObject);
var maybeTarget = ref.get();
if (maybeTarget != null) {
    // object hasn't been garbage collected
} else {
    // object no longer exists
}

In OpenFL’s EventDispatcher class, each call to addEventListener() results in the creation of a Listener object, which stores data about each listener that is added, such as whether the listener should be called for the capture phase, and what the listener’s priority is, which affects the order in which listeners are called. Basically, it’s a data structure that looks kind of like this:

private class Listener {
    public var callback:(Dynamic)->Void;
    public var priority:Int;
    public var useCapture:Bool;
}

In order to store a listener function as a weak reference, that callback member variable won’t work because setting it creates a strong reference. Weak listeners need to be stored differently.

private class Listener {
    public var callback:(Dynamic)->Void;
    public var priority:Int;
    public var useCapture:Bool;

    public var useWeakReference:Bool;
    #if (js && html5)
    public var weakRefCallback:WeakRef;
    #elseif cpp
    public var weakRefCallback:cpp.vm.WeakRef<(Dynamic)->Void>;
    #end
}

Similar to the useCapture field, I added a useWeakReference boolean field. Then, I added a separate weakRefCallback field to store the listener using the appropriate weak reference type for the target (JS vs C++).

Now, when dispatchEvent() is called, the dispatcher can loop through the Listener objects and quickly check whether a particular listener was added weakly or strongly. If the listener was added weakly, it can check whether the listener was garbage collected or not.

if (listener.useWeakReference) {
    var weakCallback = listener.weakRefCallback.deref();
    if (weakCallback != null) {
        weakCallback(event);
    }
} else {
    listener.callback(event);
}

Now, you might wonder, what happens to the Listener objects once the function held by a WeakRef has been garbage collected? Obviously, they will stick around in memory, which could slow down dispatchEvent() if you added a ton of weak listeners and never removed them. Avoiding memory leaks by trading for slower performance isn’t good, so EventDispatcher needs a way to clean things up from time to time so that it stays fast.

In the code above that calls the listener functions, I skipped some of the details. The Listener and WeakRef are actually cleaned up right away when EventDispatcher detects that the function has been garbage collected. The real code looks much closer to this:

var weakCallback = listener.weakRefCallback.get();
if (weakCallback != null) {
    iterator.remove(listener);
} else {
    weakCallback(event);
}

Maybe in the future, it might make sense to detect garbage collected weak listeners in other methods of EventDispatcher (not only in the dispatchEvent() method), but I feel like this is a good start that adds very little overhead.

Where can I find the code?

If you want to try this feature out, you’ll need to check out OpenFL’s 9.3.0-Dev branch on Github, or download the openfl-haxelib artifact from a successful Github Actions 9.30-Dev nightly build. Of course, this code is not yet ready for release to Haxelib, so use at your own risk in production. There may still be some bugs.

And that’s the end of OpenFL Devlog #1. Stay tuned for more posts about my work on OpenFL internals and some new features that I’ll be implementing in the near future.